为您查找到相关结果

工业大数据

本词条由“新工业网”工业百科词条编写组整理。

工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。其以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。其主要来源可分为以下三类:第一类是生产经营相关业务数据。第二类是设备物联数据。第三类是外部数据。


特征


工业大数据除具有一般大数据的特征(数据量大、多样、快速和价值密度低)外,还具有时序性、强关联性、准确性、闭环性等特征。


(1)数据容量大 (Volume):数据的大小决定所考虑的数据的价值和潜在的信息;工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。


(2)多样 (Variety):指数据类型的多样性和来源广泛;工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节;并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。


(3)快速 (Velocity):指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求时限时间分析达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。


(4)价值密度低 (Value):工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率,及促进个性化定制、服务化转型等智能制造新模式变革。


(5)时序性 (Sequence):工业大数据具有较强的时序性,如订单、设备状态数据等。


(6)强关联性 (Strong-Relevance):一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。


(7)准确性 (Accuracy):主要指数据的真实性、完整性和可靠性,更加关注数据质量,以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。


(8)闭环性 (Closed-loop):包括产品全生命周期横向过程中数据链条的封闭和关联,以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。


由于以上特征,工业大数据作为大数据的一个应用行业,在具有广阔应用前景的同时,对于传统的数据管理技术与数据分析技术也提出了很大的挑战。 


价值


大数据是制造业提高核心能力、整合产业链和实现从要素驱动向创新驱动转型的有力手段。对一个制造型企业来说,大数据不仅可以用来提升企业的运行效率,更重要的是如何通过大数据等新一代信息技术所提供的能力来改变商业流程及商业模式。从企业战略管理的视角,可看出大数据及相关技术与企业战略之间的三种主要关系如下:


大数据与战略核心能力:大数据可以用于提升企业的运行效率。


大数据与价值链:大数据及相关技术可以帮助企业扁平化运行、加快信息在产品生产制造过程中的流动。


大数据与制造模式:大数据可用于帮助制造模式的改变,形成新的商业模式。其中比较典型的智能制造模式有自动化生产、个性化制造、网络化协调及服务化转型等。

作者:
  • 短信登录
  • 密码登录
还没有账号,
登录即代表您同意本网站的 《用户注册协议》
还没有账号,
登录即代表您同意本网站的 《用户注册协议》
注册
已有账号, 立即登录
登录即代表您同意本网站的 《用户注册协议》
找回密码