为您查找到相关结果

人工智能

本词条由“新工业网”工业百科词条编写组整理。


当今,人们在日常生活中接触人工智能的频率越来越高。有可以帮用户买菜的京东智能冰箱;可以做自动翻译的机器;还有Siri、Alexa和Cortana这样的机器人助理;以及无人车、AlphaGo等已经把人工智能技术带到了“看得到摸得着”的境地。


那么人工智能到底是什么?这个领域涉及哪些方面?人工智能要完成的目标和任务有哪些?接下来的内容将做一一介绍。

什么是人工智能

 

Alan Turing定义的AI是:能使计算机完成那些需要人类智力才能完成的工作的科学。斯坦福大学的学者认为AI是智能机器的科学和工程,特别是智能计算机程序。维基百科定义AI是指由人工制造出来的系统所表现出来的智能,该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。


不管怎样定义,都离不开智能,然而到目前为止人类还没能统一地给出智能的定义,通常所说的智能也只是参考人类智慧的表现形式。原中国人工智能学会理事长钟义信教授,认为人类智慧包含发现问题、定义问题、解决问题三方面,而人工智能目前只做到了解决问题的程度。


人工智能的历史


历史上人工智能有以下三大学派:


符号主义(symbolicism),又称为逻辑主义(logi-cism)、心理学派(psychologism)或计算机学派(computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。


连接主义(connectionism),又称为仿生学派(bi-onicsism)或生理学派(physiologism),其主要原理为神经网络及神经网络间的连接机制与学习算法。


行为主义(actionism),又称为进化主义(evoluti-onism)或控制论学派(cyberneticsism),其原理为控制论及感知——动作型控制系统。


人工智能的目标


人工智能的目标包括:推理、知识表示、自动规划、机器学习、自然语言理解、计算机视觉、机器人学和强人工智能八个方面。


知识表示和推理包括:命题演算和归结,谓词演算和归结,可以进行一些公式或定理的推导。


自动规划包括机器人的计划、动作和学习,状态空间搜索,敌对搜索,规划等内容。


机器学习这一研究领域是由AI的一个子目标发展而来,用来帮助机器和软件进行自我学习来解决遇到的问题。


自然语言处理是另一个由AI的一个子目标发展而来的研究领域,用来帮助机器与真人进行沟通交流。


计算机视觉是由AI的目标而兴起的一个领域,用来辨认和识别机器所能看到的物体。


机器人学也是脱胎于AI的目标,用来给一个机器赋予实际的形态以完成实际的动作。


人工智能、机器学习、数据挖掘这些非常相关的术语或知识我们经常看到,也见到很多关于三者关系的文章和讨论。一般来说,人工智能是一个很大的研究领域;机器学习是人工智能的一个目标,提供很多算法;而数据挖掘是偏向算法应用的部分。


人工智能、机器学习以及数据挖掘,这三者相辅相成,另外也需要其他领域的知识支持。具体关系请参考上图。


人工智能的方法


为了达到人工智能的目标,下面依次梳理一下学术和工业界研究的各种方法和成果。


4.1 知识的表示和推理


知识表示包括:基于知识的系统,表示常识知识等。传统的知识表示已经很成熟了,包括了描述逻辑,也包括了语义网(资源描述框架RDF)。


知识推理建立在逻辑上,首先需要庞大的数据集,比如freebase;其次需要关系抽取自动化工具;最后需要合理的知识存储结构,比如资源描述框架RDF。


谷歌提的知识图谱概念就是一种知识工程,它有庞大的知识库和基于知识库的各种服务。早年业界研究的知识本体也是一种知识工程,研究成果有 FrameNet、WordNet、中文知网HowNet等。


IBM在2011年研发了Watson问答系统。谷歌在2012年提出知识图谱,作为谷歌的两大重要技术储备,一个是深度学习,形成了谷歌大脑;另一个就是知识图谱,用来支撑下一代搜索和在线广告业务。


脸谱公司利用知识图谱技术构建兴趣图谱,用来连接人、分享的信息等,并基于此构建了graph search。其他的工业应用还有:SIRI、EVI、Google Now、Dbpedia、 freebase等。一般一个知识工程的底层技术架构,请参考以上图示。


4.2 自动规划


首先要说一下有限状态机(FSM),一般应用于游戏机器人,网络协议,正则表达式,词法语法分析,自动客服等。如下图是一个简单的游戏机器人状态转移和行动图。


其次是状态空间搜索,最简单粗暴的是盲目搜索,就像特斯拉评价爱迪生:“如果说有一根针掉进草垛了,让他去找,他会毫不犹豫的,一根一根草挑出来找”。优化改进的版本是启发式搜索,如A*算法。这方面的应用有国际象棋Deepblue,围棋AlphaGo。AlphaGo 在蒙特卡洛树搜索 (Monte Carlo Tree Search, MCTS) 基础上使用了深度学习,监督学习和增强学习等方法。


“蒙特卡洛树搜索”是一类启发式的搜索策略,能够基于对搜索空间的随机抽样来扩大搜索树,始终保证选取当前抽样中的最优策略从而不断接近全局最优,确定每一步棋应该怎么走才能够创造更好机会。另外还包括:计划、动作和学习,敌对搜索,基于逻辑的规划方法,状态演算等内容。


4.3 机器学习


谷歌CEO桑德尔·皮蔡在一封致股东信中,把机器学习誉为人工智能和计算的真正未来,可想而知机器学习在人工智能研究领域的重要地位。


机器学习的方式包括:有监督学习、无监督学习、半监督学习和强化学习。其中的算法有:回归算法(最小二乘法、LR等),基于实例的算法(KNN、LVQ等),正则化方法(LASSO等),决策树算法(CART、C4.5、RF等),贝叶斯方法(朴素贝叶斯、BBN等),基于核的算法(SVM、LDA等),聚类算法(K-Means、DBSCAN、EM等),关联规则(Apriori、FP-Grouth),遗传算法,人工神经网络(PNN、BP等),深度学习(RBN、DBN、CNN、DNN、LSTM、GAN等),降维方法(PCA、PLS等),集成方法(Boosting、Bagging、AdaBoost、RF、GBDT等)。


4.4 自然语言处理NLP


NLP是人工智能的另一个目标,用于分析、理解和生成自然语言,以方便人和计算机设备进行交流,以及人与人之间的交流。它的应用领域包括:机器翻译,文本、语音、图片转换,聊天机器人,自动摘要,情感分析,文本分类,信息提取等。


4.5 机器人视觉


视觉对人很重要,人类获得讯息90%以上是依靠眼睛的,那么对于机器人要想获得人获取信息的能力,重点是解决机器人视觉系统。


目前机器视觉已经可以做到很多事情,比如识别人脸、标志和文字;探测物体并了解其环境的应用,如自动驾驶无人车等;检测的事件,对视频监控和人数统计;组织信息,如对于图像和图像序列的索引数据库;造型对象或环境,医学图像分析系统或地形模型;自动检测,如在制造业的应用程序。


4.6 机器人学和强人工智能


机器人学是一个交叉学科,主要研究包括环境适应机器仿生,机器人自主行为,人机协作,微纳操作机器人,制造装备机器人、科学工程机器人、服务型机器人等。目前国内的机器人行业还没有形成规模,商业化做得好的比如大疆、沈阳新松机器人公司。


强人工智能是人工智能研究的最主要目标之一,强人工智能也指通用人工智能(artificial general intelligence,AGI),或具备执行一般智慧行为的能力。强人工智能通常把人工智能和意识、感性、知识和自觉等人类的特征互相连结。


实现强人工智能至少需要拥有以下能力:


· 自动推理,使用一些策略来解决问题,在不确定性的环境中作出决策;


· 知识表示,包括常识知识库;


· 自动规划;


· 学习;


· 使用自然语言进行沟通;


整合以上这些手段来达到同一个的目标。目前的强人工智能主要出现在电影或小说里,比如斯皮尔伯格导演的《人工智能》里面的机器男孩大卫。


最后,再回到人类智慧和人工智能的讨论上,人类智慧是人类的“隐性智慧”与“显性智慧”相互作用相互促进相辅相成的能力体系。


其中,“隐性智慧”主要是指人类发现问题和定义问题从而设定工作框架的能力,由目的、知识、直觉能力、抽象能力、想象能力、灵感能力、顿悟能力和艺术创造能力所支持,具有很强的内隐性,因而不容易被确切理解,更难以在机器上进行模拟;“显性智慧”主要是指人类在隐性智慧所设定工作框架内解决问题的能力,依赖于收集信息、生成知识和创生解决问题的策略并转换为行动等能力的支持,具有较为明确的外显性,因而有可能被逐步理解并在机器上模拟出来。


目前几乎所有的人工智能都只能模仿人类的解决问题的能力,而没有发现问题、定义问题的能力。因此,“人工智能将全面超越人类智慧”的说法没有科学根据,目前的人工智能只是帮助人类提高生产力的工具而已。


作者:根据网络资料整理。
  • 短信登录
  • 密码登录
还没有账号,
登录即代表您同意本网站的 《用户注册协议》
还没有账号,
登录即代表您同意本网站的 《用户注册协议》
注册
已有账号, 立即登录
登录即代表您同意本网站的 《用户注册协议》
找回密码